gigl.src.training.v1.lib.data_loaders.common#

Attributes#

Classes#

DataloaderConfig

DataloaderTypes

Create a collection of name/value pairs.

Module Contents#

class gigl.src.training.v1.lib.data_loaders.common.DataloaderConfig[source]#
batch_size: int = 32[source]#
num_workers: int = 0[source]#
pin_memory: bool = False[source]#
seed: int = 42[source]#
should_loop: bool = False[source]#
uris: list[gigl.common.Uri] | dict[gigl.src.common.types.graph_data.NodeType, list[gigl.common.Uri]][source]#
class gigl.src.training.v1.lib.data_loaders.common.DataloaderTypes(*args, **kwds)[source]#

Bases: enum.Enum

Create a collection of name/value pairs.

Example enumeration:

>>> class Color(Enum):
...     RED = 1
...     BLUE = 2
...     GREEN = 3

Access them by:

  • attribute access:

>>> Color.RED
<Color.RED: 1>
  • value lookup:

>>> Color(1)
<Color.RED: 1>
  • name lookup:

>>> Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:

>>> len(Color)
3
>>> list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

test_main = 'test_main'[source]#
test_random_negative = 'test_random_negative'[source]#
train_main = 'train_main'[source]#
train_random_negative = 'train_random_negative'[source]#
val_main = 'val_main'[source]#
val_random_negative = 'val_random_negative'[source]#
gigl.src.training.v1.lib.data_loaders.common.logger[source]#