gigl.distributed.sampler#
Classes#
Sampler input specific for ABLP use case. Contains additional information about positive labels, negative labels, and the corresponding |
Module Contents#
- class gigl.distributed.sampler.ABLPNodeSamplerInput(node, input_type, positive_labels, negative_labels, supervision_node_type)[source]#
Bases:
graphlearn_torch.sampler.NodeSamplerInput
Sampler input specific for ABLP use case. Contains additional information about positive labels, negative labels, and the corresponding supervision node type
- Parameters:
node (torch.Tensor) – Anchor nodes to fanout from
input_type (Optional[Union[str, NodeType]]) – Node type of the anchor nodes
positive_labels (torch.Tensor) – Positive label nodes to fanout from
negative_labels (Optional[torch.Tensor]) – Negative label nodes to fanout from
supervision_node_type (Optional[Union[str, NodeType]]) – Node type of the positive and negative labels. GiGL currently only supports one supervision node type, this may be revisited in the future