gigl.distributed.sampler#
Attributes#
Classes#
Sampler input specific for ABLP use case. Contains additional information about positive labels, negative labels, and the corresponding |
Functions#
Prefixes the key with "#META |
Module Contents#
- class gigl.distributed.sampler.ABLPNodeSamplerInput(node, input_type, positive_label_by_edge_types, negative_label_by_edge_types)[source]#
Bases:
graphlearn_torch.sampler.NodeSamplerInput
Sampler input specific for ABLP use case. Contains additional information about positive labels, negative labels, and the corresponding supervision node type
- Parameters:
node (torch.Tensor) – Anchor nodes to fanout from
input_type (Optional[Union[str, NodeType]]) – Node type of the anchor nodes
positive_label_by_edge_types (dict[EdgeType, torch.Tensor]) – Positive label nodes to fanout from
negative_label_by_edge_types (dict[EdgeType, torch.Tensor]) – Negative label nodes to fanout from
- property negative_label_by_edge_types: dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor][source]#
- Return type:
dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor]
- property positive_label_by_edge_types: dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor][source]#
- Return type:
dict[gigl.src.common.types.graph_data.EdgeType, torch.Tensor]
- gigl.distributed.sampler.metadata_key_with_prefix(key)[source]#
Prefixes the key with “#META Do this as GLT also does this. alibaba/graphlearn-for-pytorch
- Parameters:
key (str)
- Return type:
str