Skip to main content
Ctrl+K

GiGL

  • User Guide
  • API Reference
  • GitHub
  • User Guide
  • API Reference
  • GitHub

Section Navigation

Overview

  • Overview
  • GiGL Architecture
    • Config Populator
    • Data Preprocessor
    • Subgraph Sampler
    • Split Generator
    • Trainer
    • Inference

Getting Started

  • Quick Start
  • Cloud Setup Guide
  • Installation
  • Orchestration
  • Examples
    • Toy Example
    • Running the MAG240M experiments on your own GCP project
      • (Optional) Fetch MAG240M Data into your own project
      • MAG240M E2E Example

Config Guides

  • Resource Config Guide
  • Task Config Guide
  • Data Preprocessor Spec Guide

Public Resources

  • Docker Images
  • Public Assets

Trouble Shooting

  • Frequently Asked Questions (FAQ)
  • User Guide

User Guide#

Welcome to the GiGL User Guide. This guide provides detailed documentation to help you effectively use the library.

Overview

  • Overview
  • GiGL Architecture

Getting Started

  • Quick Start
    • 1. Install GiGL
    • 2. Setup your Cloud Environment
    • 3. Config Setup
    • 4. Running an End To End GiGL Pipeline
    • Digging Deeper and Advanced Usage
  • Cloud Setup Guide
    • GCP Project Setup Guide
    • AWS Project Setup Guide
  • Installation
    • Supported Environments
    • Install Prerequisites - setting up your dev machine
    • Install GiGL
  • Orchestration
    • Local Runner
    • VertexAI (Kubeflow) Orchestration
    • Importable GiGL
  • Examples
    • Toy Example
    • Running the MAG240M experiments on your own GCP project

Config Guides

  • Resource Config Guide
  • Task Config Guide
  • Data Preprocessor Spec Guide

Public Resources

  • Docker Images
  • Public Assets

Trouble Shooting

  • Frequently Asked Questions (FAQ)

previous

GiGL: Gigantic Graph Learning

next

Overview

Edit on GitHub

© Copyright 2025, Snap Inc.

Created using Sphinx 7.4.7.

Built with the PyData Sphinx Theme 0.16.1.