gigl.orchestration.kubeflow.kfp_orchestrator#
Attributes#
Classes#
| Orchestration of Kubeflow Pipelines for GiGL. | 
Module Contents#
- class gigl.orchestration.kubeflow.kfp_orchestrator.KfpOrchestrator[source]#
- Orchestration of Kubeflow Pipelines for GiGL. .. method:: compile - Compiles the Kubeflow pipeline. - run()[source]#
- Runs the Kubeflow pipeline. - Parameters:
- applied_task_identifier (gigl.src.common.types.AppliedTaskIdentifier) 
- task_config_uri (gigl.common.Uri) 
- resource_config_uri (gigl.common.Uri) 
- start_at (str) 
- stop_after (Optional[str]) 
- compiled_pipeline_path (gigl.common.Uri) 
- labels (Optional[dict[str, str]]) 
- notification_emails (Optional[list[str]]) 
 
- Return type:
- google.cloud.aiplatform.PipelineJob 
 
 - upload()#
- Uploads the pipeline to KFP. 
 - wait_for_completion()[source]#
- Waits for the pipeline run to complete. - Parameters:
- run (Union[str, google.cloud.aiplatform.PipelineJob, list[str], list[google.cloud.aiplatform.PipelineJob]]) 
 
 - classmethod compile(cuda_container_image, cpu_container_image, dataflow_container_image, dst_compiled_pipeline_path=DEFAULT_KFP_COMPILED_PIPELINE_DEST_PATH, additional_job_args=None, tag=None)[source]#
- Compiles the GiGL Kubeflow pipeline. - Parameters:
- cuda_container_image (str) – Container image for CUDA (see: containers/Dockerfile.cuda). 
- cpu_container_image (str) – Container image for CPU. 
- dataflow_container_image (str) – Container image for Dataflow. 
- dst_compiled_pipeline_path (Uri) – Destination path for the compiled pipeline YAML file. Defaults to 
- additional_job_args (Optional[dict[gigl.src.common.constants.components.GiGLComponents, dict[str, str]]]) 
- tag (Optional[str]) 
 
- Return type:
 - :param - DEFAULT_KFP_COMPILED_PIPELINE_DEST_PATH.: :param additional_job_args: Additional arguments to be passed into components, organized by component. :type additional_job_args: Optional[dict[GiGLComponents, dict[str, str]]] :param tag: Optional tag to include in the pipeline description. :type tag: Optional[str]- Returns:
- The URI of the compiled pipeline. 
- Return type:
- Parameters:
- cuda_container_image (str) 
- cpu_container_image (str) 
- dataflow_container_image (str) 
- dst_compiled_pipeline_path (gigl.common.Uri) 
- additional_job_args (Optional[dict[gigl.src.common.constants.components.GiGLComponents, dict[str, str]]]) 
- tag (Optional[str]) 
 
 
 - run(applied_task_identifier, task_config_uri, resource_config_uri, start_at=DEFAULT_START_AT_COMPONENT, stop_after=None, compiled_pipeline_path=DEFAULT_KFP_COMPILED_PIPELINE_DEST_PATH, labels=None, notification_emails=None)[source]#
- Runs the GiGL Kubeflow pipeline. - Parameters:
- applied_task_identifier (AppliedTaskIdentifier) – Identifier for the task. 
- task_config_uri (Uri) – URI of the task configuration file. 
- resource_config_uri (Uri) – URI of the resource configuration file. 
- start_at (str) – Component to start the pipeline at. Defaults to ‘config_populator’. 
- stop_after (Optional[str]) – Component to stop the pipeline after. Defaults to None i.e. run entire pipeline. 
- compiled_pipeline_path (Uri) – Path to the compiled pipeline YAML file. 
- labels (Optional[dict[str, str]]) – Labels to associate with the run. 
- notification_emails (Optional[list[str]]) – Emails to send notification to. See https://cloud.google.com/vertex-ai/docs/pipelines/email-notifications for more details. 
 
- Returns:
- The created pipeline job. 
- Return type:
- aiplatform.PipelineJob 
 
 
- gigl.orchestration.kubeflow.kfp_orchestrator.DEFAULT_PIPELINE_VERSION_NAME = 'gigl-pipeline-version-at-Uninferable'[source]#
