snapchat.research.gbml.gbml_config_pb2#
@generated by mypy-protobuf. Do not edit manually! isort:skip_file
Attributes#
Classes#
TODO: document all protos with comments. |
Module Contents#
- class snapchat.research.gbml.gbml_config_pb2.GbmlConfig(*, task_metadata=..., graph_metadata=..., shared_config=..., dataset_config=..., trainer_config=..., inferencer_config=..., post_processor_config=..., metrics_config=..., profiler_config=..., feature_flags=...)[source]#
Bases:
google.protobuf.message.MessageTODO: document all protos with comments.
- Parameters:
task_metadata (global___GbmlConfig | None)
graph_metadata (snapchat.research.gbml.graph_schema_pb2.GraphMetadata | None)
shared_config (global___GbmlConfig | None)
dataset_config (global___GbmlConfig | None)
trainer_config (global___GbmlConfig | None)
inferencer_config (global___GbmlConfig | None)
post_processor_config (global___GbmlConfig | None)
metrics_config (global___GbmlConfig | None)
profiler_config (global___GbmlConfig | None)
feature_flags (collections.abc.Mapping[str, str] | None)
- class DatasetConfig(*, data_preprocessor_config=..., subgraph_sampler_config=..., split_generator_config=...)[source]#
Bases:
google.protobuf.message.MessageContains config related to generating training data for a GML task.
- Parameters:
data_preprocessor_config (global___GbmlConfig | None)
subgraph_sampler_config (global___GbmlConfig | None)
split_generator_config (global___GbmlConfig | None)
- class DataPreprocessorConfig(*, data_preprocessor_config_cls_path=..., data_preprocessor_args=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
data_preprocessor_config_cls_path (str)
data_preprocessor_args (collections.abc.Mapping[str, str] | None)
- class DataPreprocessorArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class SplitGeneratorConfig(*, split_strategy_cls_path=..., split_strategy_args=..., assigner_cls_path=..., assigner_args=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
split_strategy_cls_path (str)
split_strategy_args (collections.abc.Mapping[str, str] | None)
assigner_cls_path (str)
assigner_args (collections.abc.Mapping[str, str] | None)
- class AssignerArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class SplitStrategyArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- property assigner_args: google.protobuf.internal.containers.ScalarMap[str, str][source]#
Arguments to instantiate concrete Assigner instance with.
- Return type:
google.protobuf.internal.containers.ScalarMap[str, str]
- class SubgraphSamplerConfig(*, num_hops=..., num_neighbors_to_sample=..., subgraph_sampling_strategy=..., num_positive_samples=..., experimental_flags=..., num_max_training_samples_to_output=..., num_user_defined_positive_samples=..., num_user_defined_negative_samples=..., graph_db_config=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
num_hops (int)
num_neighbors_to_sample (int)
subgraph_sampling_strategy (snapchat.research.gbml.subgraph_sampling_strategy_pb2.SubgraphSamplingStrategy | None)
num_positive_samples (int)
experimental_flags (collections.abc.Mapping[str, str] | None)
num_max_training_samples_to_output (int)
num_user_defined_positive_samples (int)
num_user_defined_negative_samples (int)
graph_db_config (global___GbmlConfig | None)
- class ExperimentalFlagsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- property experimental_flags: google.protobuf.internal.containers.ScalarMap[str, str][source]#
(deprecated) number of hard negative samples (3,4hops) used in NodeAnchorBasedLinkPredictionTask also used in loss computation. Random negatives will always be used even when there are no hard negatives uint32 num_hard_negative_samples = 4;
Arguments for experimental_flags, can be permutation_strategy: ‘deterministic’ or ‘non-deterministic’
- Return type:
google.protobuf.internal.containers.ScalarMap[str, str]
- property graph_db_config: global___GbmlConfig[source]#
If specified, intention is to run ingestion into graphDB for subgraph sampler
- Return type:
global___GbmlConfig
- num_max_training_samples_to_output: int[source]#
max number of training samples (i.e. nodes to store as main samples for training) If this is not provided or is set to 0, all nodes will be included for training
- num_neighbors_to_sample: int[source]#
num_neighbors_to_sample indicates the max number of neighbors to sample for each hop num_neighbors_to_sample can be set to -1 to indicate no sampling (include all neighbors)
- num_positive_samples: int[source]#
number of positive samples (1hop) used in NodeAnchorBasedLinkPredictionTask as part of loss computation. It cannot be 0. And it’s recommended to be larger than 1 due to the split filtering logic in split generator, to guarantee most samples to have at least one positive for it to not be excluded in training.
- num_user_defined_negative_samples: int[source]#
number of user defined negative samples. Treated as hard negative samples. Used in NodeAnchorBasedLinkPredictionTask Also used in loss computation. Random negatives will always be used even when there are no user defined hard negatives
- num_user_defined_positive_samples: int[source]#
number of user defined positive samples. Used in NodeAnchorBasedLinkPredictionTask as part of loss computation. If num_user_defined_positive_samples is specified num_positive_samples will be ignored as positive samples will only be drawn from user defined positive samples.
- property subgraph_sampling_strategy: snapchat.research.gbml.subgraph_sampling_strategy_pb2.SubgraphSamplingStrategy[source]#
num hops and num neighbors to sample is deprecated in favor of neighbor_sampling_strategy. Used to specify how the graphs which are used for message passing are constructed
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- class FeatureFlagsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class GraphDBConfig(*, graph_db_ingestion_cls_path=..., graph_db_ingestion_args=..., graph_db_args=..., graph_db_sampler_config=...)[source]#
Bases:
google.protobuf.message.MessageGeneric Configuration for a GraphDB connection.
- Parameters:
graph_db_ingestion_cls_path (str)
graph_db_ingestion_args (collections.abc.Mapping[str, str] | None)
graph_db_args (collections.abc.Mapping[str, str] | None)
graph_db_sampler_config (global___GbmlConfig | None)
- class GraphDBServiceConfig(*, graph_db_client_class_path=...)[source]#
Bases:
google.protobuf.message.MessageScala-specific configuration.
- Parameters:
graph_db_client_class_path (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class GraphDbArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class GraphDbIngestionArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- property graph_db_args: google.protobuf.internal.containers.ScalarMap[str, str][source]#
General arguments required for graphDB (graph space, port, etc.) These are passed to both the Python and Scala implementations.
- Return type:
google.protobuf.internal.containers.ScalarMap[str, str]
- property graph_db_ingestion_args: google.protobuf.internal.containers.ScalarMap[str, str][source]#
Arguments to instantiate concrete BaseIngestion instance with.
- Return type:
google.protobuf.internal.containers.ScalarMap[str, str]
- graph_db_ingestion_cls_path: str[source]#
Python class path pointing to user-written BaseIngestion` class definition. e.g. my.team.graph_db.BaseInjectionImpl. This class is currently, as an implementation detail, used for injestion only. We document this purely for information purposes and may change the implementation at any time.
- property graph_db_sampler_config: global___GbmlConfig[source]#
If provided, then an implementation of a DBClient[DBResult] Scala class for a GraphDB. Intended to be used to inject specific implementations at runtime. The object constructed from this is currently, as an implementation detail, used for sampling only. We document this purely for information purposes and may change the implementation at any time.
- Return type:
global___GbmlConfig
- class InferencerConfig(*, inferencer_args=..., inferencer_cls_path=..., cls_path=..., command=..., inference_batch_size=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
inferencer_args (collections.abc.Mapping[str, str] | None)
inferencer_cls_path (str)
cls_path (str)
command (str)
inference_batch_size (int)
- class InferencerArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- WhichOneof(oneof_group)[source]#
Returns the name of the field that is set inside a oneof group.
If no field is set, returns None.
- Parameters:
oneof_group (str) – the name of the oneof group to check.
- Returns:
The name of the group that is set, or None.
- Return type:
str or None
- Raises:
ValueError – no group with the given name exists
- inference_batch_size: int[source]#
Optional. If set, will be used to batch inference samples to a specific size before call for inference is made Defaults to setting in python/gigl/src/inference/gnn_inferencer.py
- class MetricsConfig(*, metrics_cls_path=..., metrics_args=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
metrics_cls_path (str)
metrics_args (collections.abc.Mapping[str, str] | None)
- class MetricsArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class PostProcessorConfig(*, post_processor_args=..., post_processor_cls_path=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
post_processor_args (collections.abc.Mapping[str, str] | None)
post_processor_cls_path (str)
- class PostProcessorArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- class ProfilerConfig(*, should_enable_profiler=..., profiler_log_dir=..., profiler_args=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
should_enable_profiler (bool)
profiler_log_dir (str)
profiler_args (collections.abc.Mapping[str, str] | None)
- class ProfilerArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
preprocessed_metadata_uri (str)
flattened_graph_metadata (snapchat.research.gbml.flattened_graph_metadata_pb2.FlattenedGraphMetadata | None)
dataset_metadata (snapchat.research.gbml.dataset_metadata_pb2.DatasetMetadata | None)
trained_model_metadata (snapchat.research.gbml.trained_model_metadata_pb2.TrainedModelMetadata | None)
inference_metadata (snapchat.research.gbml.inference_metadata_pb2.InferenceMetadata | None)
postprocessed_metadata (snapchat.research.gbml.postprocessed_metadata_pb2.PostProcessedMetadata | None)
shared_args (collections.abc.Mapping[str, str] | None)
is_graph_directed (bool)
should_skip_training (bool)
should_skip_automatic_temp_asset_cleanup (bool)
should_skip_inference (bool)
should_skip_model_evaluation (bool)
should_include_isolated_nodes_in_training (bool)
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
DatasetMetadata message, which designates location of SplitGenerator outputs.
FlattenedGraphMetadata message, which designates locations of GraphFlat outputs.
InferenceMetadata message, which designates location of Inferencer outputs.
is the graph directed or undirected (bidirectional)
PostProcessedMetadata message, which designates location of PostProcessor outputs.
Uri where DataPreprocessor generates the PreprocessedMetadata proto.
- Return type:
google.protobuf.internal.containers.ScalarMap[str, str]
If set to true, will include isolated nodes in training data As isolated nodes do not have positive neighbors, self loop will be added SGS outputs training samples including isolated nodes, trainer adds self loops in training subgraphs
If set to true, will skip automatic clean up of temp assets Useful if you are running hyper param tuning jobs and dont want to continuously run the whole pipeline
to skip inference or not (for training only jobs)
If set, we will not compute or export model metrics like MRR, etc Has a side effect if should_skip_training is set as well to result in not generating training samples and only RNNs needed for inference.
to skip training or not (inference only)
TrainedModelMetadata message, which designates location of Trainer outputs.
- class TaskMetadata(*, node_based_task_metadata=..., node_anchor_based_link_prediction_task_metadata=..., link_based_task_metadata=...)[source]#
Bases:
google.protobuf.message.MessageIndicates the training task specification and metadata for the config.
- Parameters:
node_based_task_metadata (global___GbmlConfig | None)
node_anchor_based_link_prediction_task_metadata (global___GbmlConfig | None)
link_based_task_metadata (global___GbmlConfig | None)
- class LinkBasedTaskMetadata(*, supervision_edge_types=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
supervision_edge_types (collections.abc.Iterable[snapchat.research.gbml.graph_schema_pb2.EdgeType] | None)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- property supervision_edge_types: google.protobuf.internal.containers.RepeatedCompositeFieldContainer[snapchat.research.gbml.graph_schema_pb2.EdgeType][source]#
- Return type:
google.protobuf.internal.containers.RepeatedCompositeFieldContainer[snapchat.research.gbml.graph_schema_pb2.EdgeType]
- class NodeAnchorBasedLinkPredictionTaskMetadata(*, supervision_edge_types=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
supervision_edge_types (collections.abc.Iterable[snapchat.research.gbml.graph_schema_pb2.EdgeType] | None)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- property supervision_edge_types: google.protobuf.internal.containers.RepeatedCompositeFieldContainer[snapchat.research.gbml.graph_schema_pb2.EdgeType][source]#
- Return type:
google.protobuf.internal.containers.RepeatedCompositeFieldContainer[snapchat.research.gbml.graph_schema_pb2.EdgeType]
- class NodeBasedTaskMetadata(*, supervision_node_types=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
supervision_node_types (collections.abc.Iterable[str] | None)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- WhichOneof(oneof_group)[source]#
Returns the name of the field that is set inside a oneof group.
If no field is set, returns None.
- Parameters:
oneof_group (str) – the name of the oneof group to check.
- Returns:
The name of the group that is set, or None.
- Return type:
str or None
- Raises:
ValueError – no group with the given name exists
- class TrainerConfig(*, trainer_cls_path=..., trainer_args=..., cls_path=..., command=..., should_log_to_tensorboard=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
trainer_cls_path (str)
trainer_args (collections.abc.Mapping[str, str] | None)
cls_path (str)
command (str)
should_log_to_tensorboard (bool)
- class TrainerArgsEntry(*, key=..., value=...)[source]#
Bases:
google.protobuf.message.MessageAbstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- Parameters:
key (str)
value (str)
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- WhichOneof(oneof_group)[source]#
Returns the name of the field that is set inside a oneof group.
If no field is set, returns None.
- Parameters:
oneof_group (str) – the name of the oneof group to check.
- Returns:
The name of the group that is set, or None.
- Return type:
str or None
- Raises:
ValueError – no group with the given name exists
- ClearField(field_name)[source]#
Clears the contents of a given field.
Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group,
ValueErroris raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Raises:
ValueError – if the field_name is not a member of this message.
- Return type:
None
- HasField(field_name)[source]#
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueErrorwill be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- property feature_flags: google.protobuf.internal.containers.ScalarMap[str, str][source]#
- Return type:
google.protobuf.internal.containers.ScalarMap[str, str]
- property graph_metadata: snapchat.research.gbml.graph_schema_pb2.GraphMetadata[source]#
- Return type:
global___GbmlConfig