gigl.orchestration.local.runner#
Attributes#
Classes#
Configuration for the GiGL pipeline. |
|
Orchestration of GiGL Pipeline with local execution. |
Module Contents#
- class gigl.orchestration.local.runner.PipelineConfig[source]#
Configuration for the GiGL pipeline.
- Parameters:
applied_task_identifier (AppliedTaskIdentifier) – your job name
task_config_uri (Uri) – URI to your template task config
resource_config_uri (Uri) – URI to your resource config
custom_cuda_docker_uri (Optional[str]) – For custom training spec and GPU training on VertexAI
custom_cpu_docker_uri (Optional[str]) – For custom training spec and CPU training on VertexAI
dataflow_docker_uri (Optional[str]) – For custom datapreprocessor spec that will run in dataflow
- resource_config_uri: gigl.common.Uri[source]#
- task_config_uri: gigl.common.Uri[source]#
- class gigl.orchestration.local.runner.Runner[source]#
Orchestration of GiGL Pipeline with local execution.
- Parameters:
pipeline_config (PipelineConfig) – Configuration for the pipeline.
start_at (str) – Component to start the pipeline from. Default is config_populator.
- static config_check(start_at, pipeline_config)[source]#
- Parameters:
start_at (str)
pipeline_config (PipelineConfig)
- static run(pipeline_config, start_at=GiGLComponents.ConfigPopulator.value)[source]#
Runs the GiGL pipeline locally starting from the specified component.
- Parameters:
pipeline_config (PipelineConfig) – Configuration for the pipeline.
start_at (str) – Component to start the pipeline from. Defaults to ‘config_populator’.
- Returns:
None
- static run_config_populator(pipeline_config)[source]#
- Parameters:
pipeline_config (PipelineConfig)
- Return type:
- static run_data_preprocessor(pipeline_config)[source]#
- Parameters:
pipeline_config (PipelineConfig)
- Return type:
None
- static run_inferencer(pipeline_config)[source]#
- Parameters:
pipeline_config (PipelineConfig)
- Return type:
None
- static run_split_generator(pipeline_config)[source]#
- Parameters:
pipeline_config (PipelineConfig)
- Return type:
None
- static run_subgraph_sampler(pipeline_config)[source]#
- Parameters:
pipeline_config (PipelineConfig)
- Return type:
None
- static run_trainer(pipeline_config)[source]#
- Parameters:
pipeline_config (PipelineConfig)
- Return type:
None