gigl.src.mocking.lib.pyg_to_training_samples#
Attributes#
Functions#
| 
 | Given inputs, return a map of each root node of type root_node_type and index in `root_node_idxs' | 
| 
 | |
| Given a MockedDatasetInfo object, build a HeteroData object to use PyG convenience functions. | |
| 
 | 
Module Contents#
- gigl.src.mocking.lib.pyg_to_training_samples.build_k_hop_subgraphs_from_pyg_heterodata(hetero_data, graph_metadata_pb_wrapper, root_node_type, root_node_idxs=None, num_hops=DEFAULT_NUM_HOPS_FOR_DATASETS, num_neighbors=DEFAULT_NUM_NODES_PER_HOP)[source]#
- Given inputs, return a map of each root node of type root_node_type and index in root_node_idxs’ to GraphPbWrappers which describe the `num_hops surrounding subgraph. - Parameters:
- hetero_data (torch_geometric.data.HeteroData) 
- graph_metadata_pb_wrapper (gigl.src.common.types.pb_wrappers.graph_metadata.GraphMetadataPbWrapper) 
- root_node_type (gigl.src.common.types.graph_data.NodeType) 
- root_node_idxs (Optional[torch.Tensor]) 
- num_hops (int) 
- num_neighbors (int) 
 
- Return type:
- dict[gigl.src.common.types.graph_data.NodeId, gigl.src.common.types.pb_wrappers.graph_data_types.GraphPbWrapper] 
 
- gigl.src.mocking.lib.pyg_to_training_samples.build_node_anchor_link_prediction_samples_from_pyg_heterodata(hetero_data, sample_edge_type, graph_metadata_pb_wrapper, mocked_dataset_info)[source]#
- Parameters:
- hetero_data (torch_geometric.data.HeteroData) 
- sample_edge_type (gigl.src.common.types.graph_data.EdgeType) 
- graph_metadata_pb_wrapper (gigl.src.common.types.pb_wrappers.graph_metadata.GraphMetadataPbWrapper) 
- mocked_dataset_info (gigl.src.mocking.lib.mocked_dataset_resources.MockedDatasetInfo) 
 
- Return type:
- Tuple[list[snapchat.research.gbml.training_samples_schema_pb2.NodeAnchorBasedLinkPredictionSample], list[snapchat.research.gbml.training_samples_schema_pb2.RootedNodeNeighborhood], list[snapchat.research.gbml.training_samples_schema_pb2.RootedNodeNeighborhood]] 
 
- gigl.src.mocking.lib.pyg_to_training_samples.build_pyg_heterodata_from_mocked_dataset_info(mocked_dataset_info)[source]#
- Given a MockedDatasetInfo object, build a HeteroData object to use PyG convenience functions. - Parameters:
- mocked_dataset_info (gigl.src.mocking.lib.mocked_dataset_resources.MockedDatasetInfo) 
- Return type:
- torch_geometric.data.HeteroData 
 
- gigl.src.mocking.lib.pyg_to_training_samples.build_supervised_node_classification_samples_from_pyg_heterodata(hetero_data, root_node_type, graph_metadata_pb_wrapper)[source]#
- Parameters:
- hetero_data (torch_geometric.data.HeteroData) 
- root_node_type (gigl.src.common.types.graph_data.NodeType) 
- graph_metadata_pb_wrapper (gigl.src.common.types.pb_wrappers.graph_metadata.GraphMetadataPbWrapper) 
 
- Return type:
- list[snapchat.research.gbml.training_samples_schema_pb2.SupervisedNodeClassificationSample] 
 
