gigl.src.mocking.lib.pyg_to_training_samples#

Attributes#

Functions#

build_k_hop_subgraphs_from_pyg_heterodata(hetero_data, ...)

Given inputs, return a map of each root node of type root_node_type and index in `root_node_idxs'

build_node_anchor_link_prediction_samples_from_pyg_heterodata(...)

build_pyg_heterodata_from_mocked_dataset_info(...)

Given a MockedDatasetInfo object, build a HeteroData object to use PyG convenience functions.

build_supervised_node_classification_samples_from_pyg_heterodata(...)

Module Contents#

gigl.src.mocking.lib.pyg_to_training_samples.build_k_hop_subgraphs_from_pyg_heterodata(hetero_data, graph_metadata_pb_wrapper, root_node_type, root_node_idxs=None, num_hops=DEFAULT_NUM_HOPS_FOR_DATASETS, num_neighbors=DEFAULT_NUM_NODES_PER_HOP)[source]#

Given inputs, return a map of each root node of type root_node_type and index in root_node_idxs’ to GraphPbWrappers which describe the `num_hops surrounding subgraph.

Parameters:
Return type:

Dict[gigl.src.common.types.graph_data.NodeId, gigl.src.common.types.pb_wrappers.graph_data_types.GraphPbWrapper]

Parameters:
Return type:

Tuple[List[snapchat.research.gbml.training_samples_schema_pb2.NodeAnchorBasedLinkPredictionSample], List[snapchat.research.gbml.training_samples_schema_pb2.RootedNodeNeighborhood], List[snapchat.research.gbml.training_samples_schema_pb2.RootedNodeNeighborhood]]

gigl.src.mocking.lib.pyg_to_training_samples.build_pyg_heterodata_from_mocked_dataset_info(mocked_dataset_info)[source]#

Given a MockedDatasetInfo object, build a HeteroData object to use PyG convenience functions.

Parameters:

mocked_dataset_info (gigl.src.mocking.lib.mocked_dataset_resources.MockedDatasetInfo)

Return type:

torch_geometric.data.HeteroData

gigl.src.mocking.lib.pyg_to_training_samples.build_supervised_node_classification_samples_from_pyg_heterodata(hetero_data, root_node_type, graph_metadata_pb_wrapper)[source]#
Parameters:
Return type:

List[snapchat.research.gbml.training_samples_schema_pb2.SupervisedNodeClassificationSample]

gigl.src.mocking.lib.pyg_to_training_samples.DEFAULT_NUM_HOPS_FOR_DATASETS = 1[source]#
gigl.src.mocking.lib.pyg_to_training_samples.DEFAULT_NUM_NEGATIVE_SAMPLES_PER_POS_EDGE = 1[source]#
gigl.src.mocking.lib.pyg_to_training_samples.DEFAULT_NUM_NODES_PER_HOP = 5[source]#
gigl.src.mocking.lib.pyg_to_training_samples.DEFAULT_PYG_NODE_ANCHOR_SPLIT_TRANSFORM[source]#