gigl.src.common.utils.eval_metrics#
Functions#
| 
 | Computes Hit Rate @ K metrics for various Ks, evaluating 1+ positives against 1+ negatives. | 
| 
 | Computes Mean Reciprocal Rank (MRR), evaluating 1+ positives against 1+ negatives. | 
Module Contents#
- gigl.src.common.utils.eval_metrics.hit_rate_at_k(pos_scores, neg_scores, ks)[source]#
- Computes Hit Rate @ K metrics for various Ks, evaluating 1+ positives against 1+ negatives. - Parameters:
- pos_scores (torch.FloatTensor) – Contains 1 or more positive sample scores. 
- neg_scores (torch.FloatTensor) – Contains 1 or more negative sample scores. 
- ks (torch.LongTensor) – k-values for which to compute hits. 
 
- Returns:
- Hit rates corresponding to the requested ks. 
- Return type:
- torch.FloatTensor 
 
- gigl.src.common.utils.eval_metrics.mean_reciprocal_rank(pos_scores, neg_scores)[source]#
- Computes Mean Reciprocal Rank (MRR), evaluating 1+ positives against 1+ negatives. - Parameters:
- pos_scores (torch.FloatTensor) – Contains 1 or more positive sample scores. 
- neg_scores (torch.FloatTensor) – Contains 1 or more negative sample scores. 
 
- Returns:
- Computed MRR score. 
- Return type:
- torch.FloatTensor 
 
