gigl.src.common.utils.eval_metrics#
Functions#
|
Computes Hit Rate @ K metrics for various Ks, evaluating 1+ positives against 1+ negatives. |
|
Computes Mean Reciprocal Rank (MRR), evaluating 1+ positives against 1+ negatives. |
Module Contents#
- gigl.src.common.utils.eval_metrics.hit_rate_at_k(pos_scores, neg_scores, ks)[source]#
Computes Hit Rate @ K metrics for various Ks, evaluating 1+ positives against 1+ negatives.
- Parameters:
pos_scores (torch.FloatTensor) – Contains 1 or more positive sample scores.
neg_scores (torch.FloatTensor) – Contains 1 or more negative sample scores.
ks (torch.LongTensor) – k-values for which to compute hits.
- Returns:
Hit rates corresponding to the requested ks.
- Return type:
torch.FloatTensor
- gigl.src.common.utils.eval_metrics.mean_reciprocal_rank(pos_scores, neg_scores)[source]#
Computes Mean Reciprocal Rank (MRR), evaluating 1+ positives against 1+ negatives.
- Parameters:
pos_scores (torch.FloatTensor) – Contains 1 or more positive sample scores.
neg_scores (torch.FloatTensor) – Contains 1 or more negative sample scores.
- Returns:
Computed MRR score.
- Return type:
torch.FloatTensor