gigl.src.common.models.pyg.graph.augmentations#
Functions#
|
GRACE feature dropping function with probability drop_prob. |
|
PyG implementation of DGL transformations. Supports augmentations such as dropping random edges (edge_drop_ratio), dropping random feature components (feat_drop_ratio), |
Module Contents#
- gigl.src.common.models.pyg.graph.augmentations.drop_feature(x, drop_prob)[source]#
GRACE feature dropping function with probability drop_prob. From: CRIPAC-DIG/GRACE
- Parameters:
x (torch.Tensor)
drop_prob (float)
- Return type:
torch.Tensor
- gigl.src.common.models.pyg.graph.augmentations.get_augmented_graph(graph, edge_drop_ratio=0.3, feat_drop_ratio=0.3, graph_perm=False)[source]#
PyG implementation of DGL transformations. Supports augmentations such as dropping random edges (edge_drop_ratio), dropping random feature components (feat_drop_ratio), and graph permutation (shuffling the nodes and edges of the graph randomly) https://docs.dgl.ai/en/0.9.x/api/python/transforms.html
- Parameters:
graph (torch_geometric.data.Data)
edge_drop_ratio (float)
feat_drop_ratio (float)
graph_perm (bool)
- Return type:
torch_geometric.data.Data