gigl.src.common.models.layers.decoder#
Classes#
Generic enumeration. |
|
Base class for all neural network modules. |
Module Contents#
- class gigl.src.common.models.layers.decoder.DecoderType[source]#
Bases:
enum.Enum
Generic enumeration.
Derive from this class to define new enumerations.
- class gigl.src.common.models.layers.decoder.LinkPredictionDecoder(decoder_type=DecoderType.inner_product, decoder_channel_list=None, act=F.relu, act_first=False, bias=False, plain_last=False, norm=None)[source]#
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- Parameters:
decoder_type (DecoderType)
decoder_channel_list (Optional[List[int]])
act (Union[str, Callable, None])
act_first (bool)
bias (Union[bool, List[bool]])
plain_last (bool)
norm (Optional[Union[str, Callable]])
Initialize internal Module state, shared by both nn.Module and ScriptModule.