gigl.experimental.knowledge_graph_embedding.lib.config.training#
Classes#
| Configuration for model checkpointing during training. | |
| Configuration for distributed training across multiple GPUs or processes. | |
| Configuration for early stopping based on validation performance. | |
| Configuration for training progress logging. | |
| Configuration for separate optimizers for sparse and dense parameters. | |
| Configuration for optimizer hyperparameters. | |
| Main training configuration that orchestrates all training-related settings. | 
Module Contents#
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.CheckpointingConfig[source]#
- Configuration for model checkpointing during training. - save_every[source]#
- Save a checkpoint every N training steps. Allows recovery from failures and monitoring of training progress. Defaults to 10,000 steps. - Type:
- int 
 
 - should_save_async[source]#
- Whether to save checkpoints asynchronously to avoid blocking training. Improves training efficiency but may use additional memory. Defaults to True. - Type:
- bool 
 
 - load_from_path[source]#
- Path to a checkpoint file to resume training from. If None, training starts from scratch. Defaults to None. - Type:
- Optional[str] 
 
 
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.DistributedConfig[source]#
- Configuration for distributed training across multiple GPUs or processes. - num_processes_per_machine[source]#
- Number of training processes to spawn per machine. Each process typically uses one GPU. Defaults to torch.cuda.device_count() if CUDA is available, otherwise 1. - Type:
- int 
 
 
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.EarlyStoppingConfig[source]#
- Configuration for early stopping based on validation performance. 
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.LoggingConfig[source]#
- Configuration for training progress logging. 
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.OptimizerConfig[source]#
- Configuration for separate optimizers for sparse and dense parameters. - Knowledge graph embedding models typically have both sparse embeddings (updated only for nodes/edges in each batch) and dense parameters (updated every batch). Different learning rates are often beneficial for these parameter types. - sparse[source]#
- Optimizer parameters for sparse embeddings (for nodes). Defaults to OptimizerParamsConfig(lr=0.01, weight_decay=0.001). - Type:
 
 - dense[source]#
- Optimizer parameters for dense model parameters (linear layers, etc.). Defaults to OptimizerParamsConfig(lr=0.01, weight_decay=0.001). - Type:
 
 - sparse: OptimizerParamsConfig[source]#
 
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.OptimizerParamsConfig[source]#
- Configuration for optimizer hyperparameters. - lr[source]#
- Learning rate for the optimizer. Controls the step size during gradient descent. Higher values lead to faster convergence but may overshoot the minimum. Defaults to 0.001. - Type:
- float 
 
 
- class gigl.experimental.knowledge_graph_embedding.lib.config.training.TrainConfig[source]#
- Main training configuration that orchestrates all training-related settings. - This configuration combines optimization, data loading, distributed training, checkpointing, and monitoring settings for knowledge graph embedding training. - max_steps[source]#
- Maximum number of training steps to perform. If None, training continues until early stopping or manual interruption. Defaults to None. - Type:
- Optional[int] 
 
 - early_stopping[source]#
- Configuration for early stopping based on validation metrics. Defaults to EarlyStoppingConfig() with no patience limit. - Type:
 
 - dataloader[source]#
- Configuration for data loading (number of workers, memory pinning). Defaults to DataloaderConfig() with standard settings. - Type:
 
 - sampling[source]#
- Configuration for negative sampling strategy during training. Defaults to SamplingConfig() with standard settings. - Type:
 
 - optimizer[source]#
- Configuration for separate sparse and dense optimizers. Defaults to OptimizerConfig() with standard settings. - Type:
 
 - distributed[source]#
- Configuration for multi-GPU/multi-process training. Defaults to DistributedConfig() with auto-detected GPU count. - Type:
 
 - checkpointing[source]#
- Configuration for saving and loading model checkpoints. Defaults to CheckpointingConfig() with standard settings. - Type:
 
 - logging[source]#
- Configuration for training progress logging frequency. Defaults to LoggingConfig() with log-every-step setting. - Type:
 
 - checkpointing: CheckpointingConfig[source]#
 - dataloader: gigl.experimental.knowledge_graph_embedding.lib.config.dataloader.DataloaderConfig[source]#
 - distributed: DistributedConfig[source]#
 - early_stopping: EarlyStoppingConfig[source]#
 - logging: LoggingConfig[source]#
 - optimizer: OptimizerConfig[source]#
 
