gigl.experimental.knowledge_graph_embedding.lib.config.model#
Classes#
Configuration for knowledge graph embedding model architecture. |
Module Contents#
- class gigl.experimental.knowledge_graph_embedding.lib.config.model.ModelConfig[source]#
Configuration for knowledge graph embedding model architecture.
Defines the structure and behavior of the embedding model used for link prediction in heterogeneous knowledge graphs.
- node_embedding_dim[source]#
Dimensionality of node embeddings. Higher dimensions can capture more complex relationships but require more memory and computation. Defaults to 128.
- Type:
int
- embedding_similarity_type[source]#
Type of similarity function used to compute scores between node embeddings. Options include cosine similarity, dot product, etc. Defaults to SimilarityType.COSINE.
- Type:
- src_operator[source]#
Transformation operator applied to source node embeddings before computing edge scores. Can be identity (no transformation) or learned operators. Defaults to OperatorType.IDENTITY.
- Type:
- dst_operator[source]#
Transformation operator applied to destination node embeddings before computing edge scores. Can be identity (no transformation) or learned operators. Defaults to OperatorType.IDENTITY.
- Type:
- training_sampling[source]#
Sampling configuration used during training phase. Populated at runtime from training config. Defaults to None.
- Type:
Optional[SamplingConfig]
- validation_sampling[source]#
Sampling configuration used during validation phase. Populated at runtime from validation config. Defaults to None.
- Type:
Optional[SamplingConfig]
- testing_sampling[source]#
Sampling configuration used during testing phase. Populated at runtime from testing config. Defaults to None.
- Type:
Optional[SamplingConfig]
- num_edge_types[source]#
Number of distinct edge types in the knowledge graph. Populated at runtime from graph metadata. Defaults to None.
- Type:
Optional[int]
- embeddings_config[source]#
TorchRec embedding configuration for sparse embeddings. Specifies embedding tables, sharding strategies, and optimization settings. Populated at runtime. Defaults to None.
- Type:
Optional[List[torchrec.EmbeddingBagConfig]]
- embedding_similarity_type: gigl.experimental.knowledge_graph_embedding.lib.model.types.SimilarityType[source]#
- testing_sampling: gigl.experimental.knowledge_graph_embedding.lib.config.sampling.SamplingConfig | None = None[source]#
- training_sampling: gigl.experimental.knowledge_graph_embedding.lib.config.sampling.SamplingConfig | None = None[source]#
- validation_sampling: gigl.experimental.knowledge_graph_embedding.lib.config.sampling.SamplingConfig | None = None[source]#