gigl.experimental.knowledge_graph_embedding.lib.config.model#
Classes#
| Configuration for knowledge graph embedding model architecture. | 
Module Contents#
- class gigl.experimental.knowledge_graph_embedding.lib.config.model.ModelConfig[source]#
- Configuration for knowledge graph embedding model architecture. - Defines the structure and behavior of the embedding model used for link prediction in heterogeneous knowledge graphs. - node_embedding_dim[source]#
- Dimensionality of node embeddings. Higher dimensions can capture more complex relationships but require more memory and computation. Defaults to 128. - Type:
- int 
 
 - embedding_similarity_type[source]#
- Type of similarity function used to compute scores between node embeddings. Options include cosine similarity, dot product, etc. Defaults to SimilarityType.COSINE. - Type:
 
 - src_operator[source]#
- Transformation operator applied to source node embeddings before computing edge scores. Can be identity (no transformation) or learned operators. Defaults to OperatorType.IDENTITY. - Type:
 
 - dst_operator[source]#
- Transformation operator applied to destination node embeddings before computing edge scores. Can be identity (no transformation) or learned operators. Defaults to OperatorType.IDENTITY. - Type:
 
 - training_sampling[source]#
- Sampling configuration used during training phase. Populated at runtime from training config. Defaults to None. - Type:
- Optional[SamplingConfig] 
 
 - validation_sampling[source]#
- Sampling configuration used during validation phase. Populated at runtime from validation config. Defaults to None. - Type:
- Optional[SamplingConfig] 
 
 - testing_sampling[source]#
- Sampling configuration used during testing phase. Populated at runtime from testing config. Defaults to None. - Type:
- Optional[SamplingConfig] 
 
 - num_edge_types[source]#
- Number of distinct edge types in the knowledge graph. Populated at runtime from graph metadata. Defaults to None. - Type:
- Optional[int] 
 
 - embeddings_config[source]#
- TorchRec embedding configuration for sparse embeddings. Specifies embedding tables, sharding strategies, and optimization settings. Populated at runtime. Defaults to None. - Type:
- Optional[List[torchrec.EmbeddingBagConfig]] 
 
 - embedding_similarity_type: gigl.experimental.knowledge_graph_embedding.lib.model.types.SimilarityType[source]#
 - testing_sampling: gigl.experimental.knowledge_graph_embedding.lib.config.sampling.SamplingConfig | None = None[source]#
 - training_sampling: gigl.experimental.knowledge_graph_embedding.lib.config.sampling.SamplingConfig | None = None[source]#
 - validation_sampling: gigl.experimental.knowledge_graph_embedding.lib.config.sampling.SamplingConfig | None = None[source]#
 
