gigl.experimental.knowledge_graph_embedding.common.iterator_utils#
Functions#
|
Create batches of up to n elements from an iterator. |
Module Contents#
- gigl.experimental.knowledge_graph_embedding.common.iterator_utils.batched(it, n)[source]#
Create batches of up to n elements from an iterator.
Takes an input iterator and yields sub-iterators, each containing up to n elements. This is useful for processing data in chunks or creating batched operations for efficient data pipeline processing.
- Parameters:
it (Iterator) – The input iterator to batch.
n (int) – Maximum number of elements per batch. Must be >= 1.
- Yields:
Iterator –
- Sub-iterators containing up to n elements from the input iterator.
The last batch may contain fewer than n elements if the input iterator is exhausted.
- Raises:
AssertionError – If n < 1.
Example
>>> data = iter([1, 2, 3, 4, 5, 6, 7]) >>> for batch in batched(data, 3): ... print(list(batch)) [1, 2, 3] [4, 5, 6] [7]