gigl.experimental.knowledge_graph_embedding.common.iterator_utils#
Functions#
| 
 | Create batches of up to n elements from an iterator. | 
Module Contents#
- gigl.experimental.knowledge_graph_embedding.common.iterator_utils.batched(it, n)[source]#
- Create batches of up to n elements from an iterator. - Takes an input iterator and yields sub-iterators, each containing up to n elements. This is useful for processing data in chunks or creating batched operations for efficient data pipeline processing. - Parameters:
- it (Iterator) – The input iterator to batch. 
- n (int) – Maximum number of elements per batch. Must be >= 1. 
 
- Yields:
- Iterator – - Sub-iterators containing up to n elements from the input iterator.
- The last batch may contain fewer than n elements if the input iterator is exhausted. 
 
- Raises:
- AssertionError – If n < 1. 
 - Example - >>> data = iter([1, 2, 3, 4, 5, 6, 7]) >>> for batch in batched(data, 3): ... print(list(batch)) [1, 2, 3] [4, 5, 6] [7] 
