gigl.experimental.knowledge_graph_embedding.common.distributed#
Attributes#
Functions#
|
This function sets the environment variables required for |
Module Contents#
- gigl.experimental.knowledge_graph_embedding.common.distributed.set_process_env_vars_for_torch_dist(process_number_on_current_machine, num_processes_on_current_machine, machine_context, port=29500)[source]#
This function sets the environment variables required for distributed training with PyTorch. It assumes a multi-machine setup where each machine has a number of processes running. The number of machines and rendevous is determined by the machine_context provided.
- Parameters:
process_number_on_current_machine (int) – The process number on the current machine.
num_processes_on_current_machine (int) – The total number of processes on the current machine.
machine_context (DistributedContext) – The context containing information about the distributed setup.
port (int)
- Returns:
- A tuple containing:
local_rank (int): The local rank of the process on the current machine.
rank (int): The global rank of the process across all machines.
local_world_size (int): The number of processes on the current machine.
world_size (int): The total number of processes across all machines.
- Return type:
Tuple[int, int, int, int]