Source code for snapchat.research.gbml.gigl_resource_config_pb2

"""
@generated by mypy-protobuf.  Do not edit manually!
isort:skip_file
"""
import builtins
import collections.abc
import google.protobuf.descriptor
import google.protobuf.internal.containers
import google.protobuf.internal.enum_type_wrapper
import google.protobuf.message
import sys
import typing

if sys.version_info >= (3, 10):
    import typing as typing_extensions
else:
    import typing_extensions

[docs] DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
class _Component: ValueType = typing.NewType("ValueType", builtins.int) V: typing_extensions.TypeAlias = ValueType class _ComponentEnumTypeWrapper(google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Component.ValueType], builtins.type): # noqa: F821 DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor Component_Unknown: _Component.ValueType # 0 Component_Config_Validator: _Component.ValueType # 1 Component_Config_Populator: _Component.ValueType # 2 Component_Data_Preprocessor: _Component.ValueType # 3 Component_Subgraph_Sampler: _Component.ValueType # 4 Component_Split_Generator: _Component.ValueType # 5 Component_Trainer: _Component.ValueType # 6 Component_Inferencer: _Component.ValueType # 7
[docs] class Component(_Component, metaclass=_ComponentEnumTypeWrapper): """Enum for pipeline components"""
[docs] Component_Unknown: Component.ValueType # 0
[docs] Component_Config_Validator: Component.ValueType # 1
[docs] Component_Config_Populator: Component.ValueType # 2
[docs] Component_Data_Preprocessor: Component.ValueType # 3
[docs] Component_Subgraph_Sampler: Component.ValueType # 4
[docs] Component_Split_Generator: Component.ValueType # 5
[docs] Component_Trainer: Component.ValueType # 6
[docs] Component_Inferencer: Component.ValueType # 7
[docs] global___Component = Component
[docs] class SparkResourceConfig(google.protobuf.message.Message): """Configuration for Spark Components"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] MACHINE_TYPE_FIELD_NUMBER: builtins.int
[docs] NUM_LOCAL_SSDS_FIELD_NUMBER: builtins.int
[docs] NUM_REPLICAS_FIELD_NUMBER: builtins.int
[docs] machine_type: builtins.str
"""Machine type for Spark Resource"""
[docs] num_local_ssds: builtins.int
"""Number of local SSDs"""
[docs] num_replicas: builtins.int
"""Num workers for Spark Resource""" def __init__( self, *, machine_type: builtins.str = ..., num_local_ssds: builtins.int = ..., num_replicas: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["machine_type", b"machine_type", "num_local_ssds", b"num_local_ssds", "num_replicas", b"num_replicas"]) -> None: ...
[docs] global___SparkResourceConfig = SparkResourceConfig
[docs] class DataflowResourceConfig(google.protobuf.message.Message): """Configuration for Dataflow Components"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] NUM_WORKERS_FIELD_NUMBER: builtins.int
[docs] MAX_NUM_WORKERS_FIELD_NUMBER: builtins.int
[docs] MACHINE_TYPE_FIELD_NUMBER: builtins.int
[docs] DISK_SIZE_GB_FIELD_NUMBER: builtins.int
[docs] num_workers: builtins.int
"""Number of workers for Dataflow resources"""
[docs] max_num_workers: builtins.int
"""Maximum number of workers for Dataflow resources"""
[docs] machine_type: builtins.str
"""Machine type for Dataflow resources"""
[docs] disk_size_gb: builtins.int
"""Disk size in GB for Dataflow resources""" def __init__( self, *, num_workers: builtins.int = ..., max_num_workers: builtins.int = ..., machine_type: builtins.str = ..., disk_size_gb: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["disk_size_gb", b"disk_size_gb", "machine_type", b"machine_type", "max_num_workers", b"max_num_workers", "num_workers", b"num_workers"]) -> None: ...
[docs] global___DataflowResourceConfig = DataflowResourceConfig
[docs] class DataPreprocessorConfig(google.protobuf.message.Message): """Configuration for Data Preprocessor"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] EDGE_PREPROCESSOR_CONFIG_FIELD_NUMBER: builtins.int
[docs] NODE_PREPROCESSOR_CONFIG_FIELD_NUMBER: builtins.int
@property
[docs] def edge_preprocessor_config(self) -> global___DataflowResourceConfig: ...
@property
[docs] def node_preprocessor_config(self) -> global___DataflowResourceConfig: ...
def __init__( self, *, edge_preprocessor_config: global___DataflowResourceConfig | None = ..., node_preprocessor_config: global___DataflowResourceConfig | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["edge_preprocessor_config", b"edge_preprocessor_config", "node_preprocessor_config", b"node_preprocessor_config"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["edge_preprocessor_config", b"edge_preprocessor_config", "node_preprocessor_config", b"node_preprocessor_config"]) -> None: ...
[docs] global___DataPreprocessorConfig = DataPreprocessorConfig
[docs] class VertexAiTrainerConfig(google.protobuf.message.Message): """(deprecated) Configuration for Vertex AI training resources """
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] MACHINE_TYPE_FIELD_NUMBER: builtins.int
[docs] GPU_TYPE_FIELD_NUMBER: builtins.int
[docs] GPU_LIMIT_FIELD_NUMBER: builtins.int
[docs] NUM_REPLICAS_FIELD_NUMBER: builtins.int
[docs] machine_type: builtins.str
"""Machine type for training job"""
[docs] gpu_type: builtins.str
"""GPU type for training job. Must be set to 'ACCELERATOR_TYPE_UNSPECIFIED' for cpu training."""
[docs] gpu_limit: builtins.int
"""GPU limit for training job. Must be set to 0 for cpu training."""
[docs] num_replicas: builtins.int
"""Num workers for training job""" def __init__( self, *, machine_type: builtins.str = ..., gpu_type: builtins.str = ..., gpu_limit: builtins.int = ..., num_replicas: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["gpu_limit", b"gpu_limit", "gpu_type", b"gpu_type", "machine_type", b"machine_type", "num_replicas", b"num_replicas"]) -> None: ...
[docs] global___VertexAiTrainerConfig = VertexAiTrainerConfig
[docs] class KFPTrainerConfig(google.protobuf.message.Message): """(deprecated) Configuration for KFP training resources """
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] CPU_REQUEST_FIELD_NUMBER: builtins.int
[docs] MEMORY_REQUEST_FIELD_NUMBER: builtins.int
[docs] GPU_TYPE_FIELD_NUMBER: builtins.int
[docs] GPU_LIMIT_FIELD_NUMBER: builtins.int
[docs] NUM_REPLICAS_FIELD_NUMBER: builtins.int
[docs] cpu_request: builtins.str
"""Num CPU requested for training job (str) which can be a number or a number followed by "m", which means 1/1000"""
[docs] memory_request: builtins.str
"""Amount of Memory requested for training job (str) can either be a number or a number followed by one of "Ei", "Pi", "Ti", "Gi", "Mi", "Ki"."""
[docs] gpu_type: builtins.str
"""GPU type for training job. Must be set to 'ACCELERATOR_TYPE_UNSPECIFIED' for cpu training."""
[docs] gpu_limit: builtins.int
"""GPU limit for training job. Must be set to 0 for cpu training."""
[docs] num_replicas: builtins.int
"""Number of replicas for training job""" def __init__( self, *, cpu_request: builtins.str = ..., memory_request: builtins.str = ..., gpu_type: builtins.str = ..., gpu_limit: builtins.int = ..., num_replicas: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["cpu_request", b"cpu_request", "gpu_limit", b"gpu_limit", "gpu_type", b"gpu_type", "memory_request", b"memory_request", "num_replicas", b"num_replicas"]) -> None: ...
[docs] global___KFPTrainerConfig = KFPTrainerConfig
[docs] class LocalTrainerConfig(google.protobuf.message.Message): """(deprecated) Configuration for Local Training """
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] NUM_WORKERS_FIELD_NUMBER: builtins.int
[docs] num_workers: builtins.int
def __init__( self, *, num_workers: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["num_workers", b"num_workers"]) -> None: ...
[docs] global___LocalTrainerConfig = LocalTrainerConfig
[docs] class VertexAiResourceConfig(google.protobuf.message.Message): """Configuration for Vertex AI resources"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] MACHINE_TYPE_FIELD_NUMBER: builtins.int
[docs] GPU_TYPE_FIELD_NUMBER: builtins.int
[docs] GPU_LIMIT_FIELD_NUMBER: builtins.int
[docs] NUM_REPLICAS_FIELD_NUMBER: builtins.int
[docs] TIMEOUT_FIELD_NUMBER: builtins.int
[docs] machine_type: builtins.str
"""Machine type for job"""
[docs] gpu_type: builtins.str
"""GPU type for job. Must be set to 'ACCELERATOR_TYPE_UNSPECIFIED' for cpu."""
[docs] gpu_limit: builtins.int
"""GPU limit for job. Must be set to 0 for cpu."""
[docs] num_replicas: builtins.int
"""Num workers for job"""
[docs] timeout: builtins.int
"""Timeout in seconds for the job. If unset or zero, will use the default @ google.cloud.aiplatform.CustomJob, which is 7 days: https://github.com/googleapis/python-aiplatform/blob/58fbabdeeefd1ccf1a9d0c22eeb5606aeb9c2266/google/cloud/aiplatform/jobs.py#L2252-L2253 """ def __init__( self, *, machine_type: builtins.str = ..., gpu_type: builtins.str = ..., gpu_limit: builtins.int = ..., num_replicas: builtins.int = ..., timeout: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["gpu_limit", b"gpu_limit", "gpu_type", b"gpu_type", "machine_type", b"machine_type", "num_replicas", b"num_replicas", "timeout", b"timeout"]) -> None: ...
[docs] global___VertexAiResourceConfig = VertexAiResourceConfig
[docs] class KFPResourceConfig(google.protobuf.message.Message): """Configuration for KFP job resources"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] CPU_REQUEST_FIELD_NUMBER: builtins.int
[docs] MEMORY_REQUEST_FIELD_NUMBER: builtins.int
[docs] GPU_TYPE_FIELD_NUMBER: builtins.int
[docs] GPU_LIMIT_FIELD_NUMBER: builtins.int
[docs] NUM_REPLICAS_FIELD_NUMBER: builtins.int
[docs] cpu_request: builtins.str
"""Num CPU requested for job (str) which can be a number or a number followed by "m", which means 1/1000"""
[docs] memory_request: builtins.str
"""Amount of Memory requested for job (str) can either be a number or a number followed by one of "Ei", "Pi", "Ti", "Gi", "Mi", "Ki"."""
[docs] gpu_type: builtins.str
"""GPU type for job. Must be set to 'ACCELERATOR_TYPE_UNSPECIFIED' for cpu."""
[docs] gpu_limit: builtins.int
"""GPU limit for job. Must be set to 0 for cpu."""
[docs] num_replicas: builtins.int
"""Number of replicas for job""" def __init__( self, *, cpu_request: builtins.str = ..., memory_request: builtins.str = ..., gpu_type: builtins.str = ..., gpu_limit: builtins.int = ..., num_replicas: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["cpu_request", b"cpu_request", "gpu_limit", b"gpu_limit", "gpu_type", b"gpu_type", "memory_request", b"memory_request", "num_replicas", b"num_replicas"]) -> None: ...
[docs] global___KFPResourceConfig = KFPResourceConfig
[docs] class LocalResourceConfig(google.protobuf.message.Message): """Configuration for Local Jobs"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] NUM_WORKERS_FIELD_NUMBER: builtins.int
[docs] num_workers: builtins.int
def __init__( self, *, num_workers: builtins.int = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["num_workers", b"num_workers"]) -> None: ...
[docs] global___LocalResourceConfig = LocalResourceConfig
[docs] class DistributedTrainerConfig(google.protobuf.message.Message): """(deprecated) Configuration for distributed training resources """
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] VERTEX_AI_TRAINER_CONFIG_FIELD_NUMBER: builtins.int
[docs] KFP_TRAINER_CONFIG_FIELD_NUMBER: builtins.int
[docs] LOCAL_TRAINER_CONFIG_FIELD_NUMBER: builtins.int
@property
[docs] def vertex_ai_trainer_config(self) -> global___VertexAiTrainerConfig: ...
@property
[docs] def kfp_trainer_config(self) -> global___KFPTrainerConfig: ...
@property
[docs] def local_trainer_config(self) -> global___LocalTrainerConfig: ...
def __init__( self, *, vertex_ai_trainer_config: global___VertexAiTrainerConfig | None = ..., kfp_trainer_config: global___KFPTrainerConfig | None = ..., local_trainer_config: global___LocalTrainerConfig | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["kfp_trainer_config", b"kfp_trainer_config", "local_trainer_config", b"local_trainer_config", "trainer_config", b"trainer_config", "vertex_ai_trainer_config", b"vertex_ai_trainer_config"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["kfp_trainer_config", b"kfp_trainer_config", "local_trainer_config", b"local_trainer_config", "trainer_config", b"trainer_config", "vertex_ai_trainer_config", b"vertex_ai_trainer_config"]) -> None: ...
[docs] def WhichOneof(self, oneof_group: typing_extensions.Literal["trainer_config", b"trainer_config"]) -> typing_extensions.Literal["vertex_ai_trainer_config", "kfp_trainer_config", "local_trainer_config"] | None: ...
[docs] global___DistributedTrainerConfig = DistributedTrainerConfig
[docs] class TrainerResourceConfig(google.protobuf.message.Message): """Configuration for training resources"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] VERTEX_AI_TRAINER_CONFIG_FIELD_NUMBER: builtins.int
[docs] KFP_TRAINER_CONFIG_FIELD_NUMBER: builtins.int
[docs] LOCAL_TRAINER_CONFIG_FIELD_NUMBER: builtins.int
@property
[docs] def vertex_ai_trainer_config(self) -> global___VertexAiResourceConfig: ...
@property
[docs] def kfp_trainer_config(self) -> global___KFPResourceConfig: ...
@property
[docs] def local_trainer_config(self) -> global___LocalResourceConfig: ...
def __init__( self, *, vertex_ai_trainer_config: global___VertexAiResourceConfig | None = ..., kfp_trainer_config: global___KFPResourceConfig | None = ..., local_trainer_config: global___LocalResourceConfig | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["kfp_trainer_config", b"kfp_trainer_config", "local_trainer_config", b"local_trainer_config", "trainer_config", b"trainer_config", "vertex_ai_trainer_config", b"vertex_ai_trainer_config"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["kfp_trainer_config", b"kfp_trainer_config", "local_trainer_config", b"local_trainer_config", "trainer_config", b"trainer_config", "vertex_ai_trainer_config", b"vertex_ai_trainer_config"]) -> None: ...
[docs] def WhichOneof(self, oneof_group: typing_extensions.Literal["trainer_config", b"trainer_config"]) -> typing_extensions.Literal["vertex_ai_trainer_config", "kfp_trainer_config", "local_trainer_config"] | None: ...
[docs] global___TrainerResourceConfig = TrainerResourceConfig
[docs] class InferencerResourceConfig(google.protobuf.message.Message): """Configuration for distributed inference resources"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] VERTEX_AI_INFERENCER_CONFIG_FIELD_NUMBER: builtins.int
[docs] DATAFLOW_INFERENCER_CONFIG_FIELD_NUMBER: builtins.int
[docs] LOCAL_INFERENCER_CONFIG_FIELD_NUMBER: builtins.int
@property
[docs] def vertex_ai_inferencer_config(self) -> global___VertexAiResourceConfig: ...
@property
[docs] def dataflow_inferencer_config(self) -> global___DataflowResourceConfig: ...
@property
[docs] def local_inferencer_config(self) -> global___LocalResourceConfig: ...
def __init__( self, *, vertex_ai_inferencer_config: global___VertexAiResourceConfig | None = ..., dataflow_inferencer_config: global___DataflowResourceConfig | None = ..., local_inferencer_config: global___LocalResourceConfig | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["dataflow_inferencer_config", b"dataflow_inferencer_config", "inferencer_config", b"inferencer_config", "local_inferencer_config", b"local_inferencer_config", "vertex_ai_inferencer_config", b"vertex_ai_inferencer_config"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["dataflow_inferencer_config", b"dataflow_inferencer_config", "inferencer_config", b"inferencer_config", "local_inferencer_config", b"local_inferencer_config", "vertex_ai_inferencer_config", b"vertex_ai_inferencer_config"]) -> None: ...
[docs] def WhichOneof(self, oneof_group: typing_extensions.Literal["inferencer_config", b"inferencer_config"]) -> typing_extensions.Literal["vertex_ai_inferencer_config", "dataflow_inferencer_config", "local_inferencer_config"] | None: ...
[docs] global___InferencerResourceConfig = InferencerResourceConfig
[docs] class SharedResourceConfig(google.protobuf.message.Message): """Shared resources configuration"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] class CommonComputeConfig(google.protobuf.message.Message):
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] PROJECT_FIELD_NUMBER: builtins.int
[docs] REGION_FIELD_NUMBER: builtins.int
[docs] TEMP_ASSETS_BUCKET_FIELD_NUMBER: builtins.int
[docs] TEMP_REGIONAL_ASSETS_BUCKET_FIELD_NUMBER: builtins.int
[docs] PERM_ASSETS_BUCKET_FIELD_NUMBER: builtins.int
[docs] TEMP_ASSETS_BQ_DATASET_NAME_FIELD_NUMBER: builtins.int
[docs] EMBEDDING_BQ_DATASET_NAME_FIELD_NUMBER: builtins.int
[docs] GCP_SERVICE_ACCOUNT_EMAIL_FIELD_NUMBER: builtins.int
[docs] DATAFLOW_RUNNER_FIELD_NUMBER: builtins.int
[docs] project: builtins.str
"""GCP Project"""
[docs] region: builtins.str
"""GCP Region where compute is to be scheduled"""
[docs] temp_assets_bucket: builtins.str
"""GCS Bucket for where temporary assets are to be stored"""
[docs] temp_regional_assets_bucket: builtins.str
"""Regional GCS Bucket used to store temporary assets"""
[docs] perm_assets_bucket: builtins.str
"""Regional GCS Bucket that will store permanent assets like Trained Model"""
[docs] temp_assets_bq_dataset_name: builtins.str
"""Path to BQ dataset used to store temporary assets"""
[docs] embedding_bq_dataset_name: builtins.str
"""Path to BQ Dataset used to persist generated embeddings and predictions"""
[docs] gcp_service_account_email: builtins.str
"""The GCP service account email being used to schedule compute on GCP"""
[docs] dataflow_runner: builtins.str
"""The runner to use for Dataflow i.e DirectRunner or DataflowRunner""" def __init__( self, *, project: builtins.str = ..., region: builtins.str = ..., temp_assets_bucket: builtins.str = ..., temp_regional_assets_bucket: builtins.str = ..., perm_assets_bucket: builtins.str = ..., temp_assets_bq_dataset_name: builtins.str = ..., embedding_bq_dataset_name: builtins.str = ..., gcp_service_account_email: builtins.str = ..., dataflow_runner: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["dataflow_runner", b"dataflow_runner", "embedding_bq_dataset_name", b"embedding_bq_dataset_name", "gcp_service_account_email", b"gcp_service_account_email", "perm_assets_bucket", b"perm_assets_bucket", "project", b"project", "region", b"region", "temp_assets_bq_dataset_name", b"temp_assets_bq_dataset_name", "temp_assets_bucket", b"temp_assets_bucket", "temp_regional_assets_bucket", b"temp_regional_assets_bucket"]) -> None: ...
[docs] class ResourceLabelsEntry(google.protobuf.message.Message):
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] KEY_FIELD_NUMBER: builtins.int
[docs] VALUE_FIELD_NUMBER: builtins.int
[docs] key: builtins.str
[docs] value: builtins.str
def __init__( self, *, key: builtins.str = ..., value: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs] RESOURCE_LABELS_FIELD_NUMBER: builtins.int
[docs] COMMON_COMPUTE_CONFIG_FIELD_NUMBER: builtins.int
@property
[docs] def resource_labels(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
@property
[docs] def common_compute_config(self) -> global___SharedResourceConfig.CommonComputeConfig: ...
def __init__( self, *, resource_labels: collections.abc.Mapping[builtins.str, builtins.str] | None = ..., common_compute_config: global___SharedResourceConfig.CommonComputeConfig | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["common_compute_config", b"common_compute_config"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["common_compute_config", b"common_compute_config", "resource_labels", b"resource_labels"]) -> None: ...
[docs] global___SharedResourceConfig = SharedResourceConfig
[docs] class GiglResourceConfig(google.protobuf.message.Message): """GiGL resources configuration"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] SHARED_RESOURCE_CONFIG_URI_FIELD_NUMBER: builtins.int
[docs] SHARED_RESOURCE_CONFIG_FIELD_NUMBER: builtins.int
[docs] PREPROCESSOR_CONFIG_FIELD_NUMBER: builtins.int
[docs] SUBGRAPH_SAMPLER_CONFIG_FIELD_NUMBER: builtins.int
[docs] SPLIT_GENERATOR_CONFIG_FIELD_NUMBER: builtins.int
[docs] TRAINER_CONFIG_FIELD_NUMBER: builtins.int
[docs] INFERENCER_CONFIG_FIELD_NUMBER: builtins.int
[docs] TRAINER_RESOURCE_CONFIG_FIELD_NUMBER: builtins.int
[docs] INFERENCER_RESOURCE_CONFIG_FIELD_NUMBER: builtins.int
[docs] shared_resource_config_uri: builtins.str
@property
[docs] def shared_resource_config(self) -> global___SharedResourceConfig: ...
@property
[docs] def preprocessor_config(self) -> global___DataPreprocessorConfig: """Configuration for Data Preprocessor"""
@property
[docs] def subgraph_sampler_config(self) -> global___SparkResourceConfig: """Configuration for Spark subgraph sampler"""
@property
[docs] def split_generator_config(self) -> global___SparkResourceConfig: """Configuration for Spark split generator"""
@property
[docs] def trainer_config(self) -> global___DistributedTrainerConfig: """(deprecated) Configuration for trainer """
@property
[docs] def inferencer_config(self) -> global___DataflowResourceConfig: """(deprecated) Configuration for inferencer """
@property
[docs] def trainer_resource_config(self) -> global___TrainerResourceConfig: """Configuration for distributed trainer"""
@property
[docs] def inferencer_resource_config(self) -> global___InferencerResourceConfig: """Configuration for distributed inferencer"""
def __init__( self, *, shared_resource_config_uri: builtins.str = ..., shared_resource_config: global___SharedResourceConfig | None = ..., preprocessor_config: global___DataPreprocessorConfig | None = ..., subgraph_sampler_config: global___SparkResourceConfig | None = ..., split_generator_config: global___SparkResourceConfig | None = ..., trainer_config: global___DistributedTrainerConfig | None = ..., inferencer_config: global___DataflowResourceConfig | None = ..., trainer_resource_config: global___TrainerResourceConfig | None = ..., inferencer_resource_config: global___InferencerResourceConfig | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["inferencer_config", b"inferencer_config", "inferencer_resource_config", b"inferencer_resource_config", "preprocessor_config", b"preprocessor_config", "shared_resource", b"shared_resource", "shared_resource_config", b"shared_resource_config", "shared_resource_config_uri", b"shared_resource_config_uri", "split_generator_config", b"split_generator_config", "subgraph_sampler_config", b"subgraph_sampler_config", "trainer_config", b"trainer_config", "trainer_resource_config", b"trainer_resource_config"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["inferencer_config", b"inferencer_config", "inferencer_resource_config", b"inferencer_resource_config", "preprocessor_config", b"preprocessor_config", "shared_resource", b"shared_resource", "shared_resource_config", b"shared_resource_config", "shared_resource_config_uri", b"shared_resource_config_uri", "split_generator_config", b"split_generator_config", "subgraph_sampler_config", b"subgraph_sampler_config", "trainer_config", b"trainer_config", "trainer_resource_config", b"trainer_resource_config"]) -> None: ...
[docs] def WhichOneof(self, oneof_group: typing_extensions.Literal["shared_resource", b"shared_resource"]) -> typing_extensions.Literal["shared_resource_config_uri", "shared_resource_config"] | None: ...
[docs] global___GiglResourceConfig = GiglResourceConfig