Source code for snapchat.research.gbml.flattened_graph_metadata_pb2

"""
@generated by mypy-protobuf.  Do not edit manually!
isort:skip_file
"""
import builtins
import collections.abc
import google.protobuf.descriptor
import google.protobuf.internal.containers
import google.protobuf.message
import sys

if sys.version_info >= (3, 8):
    import typing as typing_extensions
else:
    import typing_extensions

[docs] DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
[docs] class SupervisedNodeClassificationOutput(google.protobuf.message.Message): """Stores SupervisedNodeClassificationSample-relevant output"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] LABELED_TFRECORD_URI_PREFIX_FIELD_NUMBER: builtins.int
[docs] UNLABELED_TFRECORD_URI_PREFIX_FIELD_NUMBER: builtins.int
[docs] labeled_tfrecord_uri_prefix: builtins.str
"""GCS prefix which can be used to glob the TFRecord dataset."""
[docs] unlabeled_tfrecord_uri_prefix: builtins.str
def __init__( self, *, labeled_tfrecord_uri_prefix: builtins.str = ..., unlabeled_tfrecord_uri_prefix: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["labeled_tfrecord_uri_prefix", b"labeled_tfrecord_uri_prefix", "unlabeled_tfrecord_uri_prefix", b"unlabeled_tfrecord_uri_prefix"]) -> None: ...
[docs] global___SupervisedNodeClassificationOutput = SupervisedNodeClassificationOutput
[docs] class NodeAnchorBasedLinkPredictionOutput(google.protobuf.message.Message): """Stores NodeAnchorBasedLinkPredictionSample-relevant output"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] class NodeTypeToRandomNegativeTfrecordUriPrefixEntry(google.protobuf.message.Message):
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] KEY_FIELD_NUMBER: builtins.int
[docs] VALUE_FIELD_NUMBER: builtins.int
[docs] key: builtins.str
[docs] value: builtins.str
def __init__( self, *, key: builtins.str = ..., value: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs] TFRECORD_URI_PREFIX_FIELD_NUMBER: builtins.int
[docs] NODE_TYPE_TO_RANDOM_NEGATIVE_TFRECORD_URI_PREFIX_FIELD_NUMBER: builtins.int
[docs] tfrecord_uri_prefix: builtins.str
"""GCS prefix which can be used to glob the TFRecord dataset.""" @property
[docs] def node_type_to_random_negative_tfrecord_uri_prefix(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: """Rooted subgraphs for each type of nodes; besides training, also used for inference as these are just subgraphs for each node"""
def __init__( self, *, tfrecord_uri_prefix: builtins.str = ..., node_type_to_random_negative_tfrecord_uri_prefix: collections.abc.Mapping[builtins.str, builtins.str] | None = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["node_type_to_random_negative_tfrecord_uri_prefix", b"node_type_to_random_negative_tfrecord_uri_prefix", "tfrecord_uri_prefix", b"tfrecord_uri_prefix"]) -> None: ...
[docs] global___NodeAnchorBasedLinkPredictionOutput = NodeAnchorBasedLinkPredictionOutput
[docs] class SupervisedLinkBasedTaskOutput(google.protobuf.message.Message): """Stores SupervisedLinkBasedTaskSample-relevant output"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] LABELED_TFRECORD_URI_PREFIX_FIELD_NUMBER: builtins.int
[docs] UNLABELED_TFRECORD_URI_PREFIX_FIELD_NUMBER: builtins.int
[docs] labeled_tfrecord_uri_prefix: builtins.str
"""GCS prefix which can be used to glob the TFRecord dataset."""
[docs] unlabeled_tfrecord_uri_prefix: builtins.str
def __init__( self, *, labeled_tfrecord_uri_prefix: builtins.str = ..., unlabeled_tfrecord_uri_prefix: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["labeled_tfrecord_uri_prefix", b"labeled_tfrecord_uri_prefix", "unlabeled_tfrecord_uri_prefix", b"unlabeled_tfrecord_uri_prefix"]) -> None: ...
[docs] global___SupervisedLinkBasedTaskOutput = SupervisedLinkBasedTaskOutput
[docs] class FlattenedGraphMetadata(google.protobuf.message.Message): """Stores flattened graph metadata output by SubgraphSampler"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] SUPERVISED_NODE_CLASSIFICATION_OUTPUT_FIELD_NUMBER: builtins.int
@property
[docs] def supervised_node_classification_output(self) -> global___SupervisedNodeClassificationOutput: """indicates the output is of SupervisedNodeClassificationSamples"""
@property @property def __init__( self, *, supervised_node_classification_output: global___SupervisedNodeClassificationOutput | None = ..., node_anchor_based_link_prediction_output: global___NodeAnchorBasedLinkPredictionOutput | None = ..., supervised_link_based_task_output: global___SupervisedLinkBasedTaskOutput | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["node_anchor_based_link_prediction_output", b"node_anchor_based_link_prediction_output", "output_metadata", b"output_metadata", "supervised_link_based_task_output", b"supervised_link_based_task_output", "supervised_node_classification_output", b"supervised_node_classification_output"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["node_anchor_based_link_prediction_output", b"node_anchor_based_link_prediction_output", "output_metadata", b"output_metadata", "supervised_link_based_task_output", b"supervised_link_based_task_output", "supervised_node_classification_output", b"supervised_node_classification_output"]) -> None: ...
[docs] def WhichOneof(self, oneof_group: typing_extensions.Literal["output_metadata", b"output_metadata"]) -> typing_extensions.Literal["supervised_node_classification_output", "node_anchor_based_link_prediction_output", "supervised_link_based_task_output"] | None: ...
[docs] global___FlattenedGraphMetadata = FlattenedGraphMetadata