Source code for snapchat.research.gbml.dataset_metadata_pb2

"""
@generated by mypy-protobuf.  Do not edit manually!
isort:skip_file
"""
import builtins
import collections.abc
import google.protobuf.descriptor
import google.protobuf.internal.containers
import google.protobuf.message
import sys

if sys.version_info >= (3, 8):
    import typing as typing_extensions
else:
    import typing_extensions

[docs] DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
[docs] class SupervisedNodeClassificationDataset(google.protobuf.message.Message): """Stores SupervisedNodeClassificationSample-relevant output"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] TRAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs] TEST_DATA_URI_FIELD_NUMBER: builtins.int
[docs] VAL_DATA_URI_FIELD_NUMBER: builtins.int
[docs] train_data_uri: builtins.str
[docs] test_data_uri: builtins.str
[docs] val_data_uri: builtins.str
def __init__( self, *, train_data_uri: builtins.str = ..., test_data_uri: builtins.str = ..., val_data_uri: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["test_data_uri", b"test_data_uri", "train_data_uri", b"train_data_uri", "val_data_uri", b"val_data_uri"]) -> None: ...
[docs] global___SupervisedNodeClassificationDataset = SupervisedNodeClassificationDataset
[docs] class NodeAnchorBasedLinkPredictionDataset(google.protobuf.message.Message): """Stores NodeAnchorBasedLinkPredictionSample-relevant output"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] class TrainNodeTypeToRandomNegativeDataUriEntry(google.protobuf.message.Message):
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] KEY_FIELD_NUMBER: builtins.int
[docs] VALUE_FIELD_NUMBER: builtins.int
[docs] key: builtins.str
[docs] value: builtins.str
def __init__( self, *, key: builtins.str = ..., value: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs] class ValNodeTypeToRandomNegativeDataUriEntry(google.protobuf.message.Message):
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] KEY_FIELD_NUMBER: builtins.int
[docs] VALUE_FIELD_NUMBER: builtins.int
[docs] key: builtins.str
[docs] value: builtins.str
def __init__( self, *, key: builtins.str = ..., value: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs] class TestNodeTypeToRandomNegativeDataUriEntry(google.protobuf.message.Message):
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] KEY_FIELD_NUMBER: builtins.int
[docs] VALUE_FIELD_NUMBER: builtins.int
[docs] key: builtins.str
[docs] value: builtins.str
def __init__( self, *, key: builtins.str = ..., value: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs] TRAIN_MAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs] TEST_MAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs] VAL_MAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs] TRAIN_NODE_TYPE_TO_RANDOM_NEGATIVE_DATA_URI_FIELD_NUMBER: builtins.int
[docs] VAL_NODE_TYPE_TO_RANDOM_NEGATIVE_DATA_URI_FIELD_NUMBER: builtins.int
[docs] TEST_NODE_TYPE_TO_RANDOM_NEGATIVE_DATA_URI_FIELD_NUMBER: builtins.int
[docs] train_main_data_uri: builtins.str
[docs] test_main_data_uri: builtins.str
[docs] val_main_data_uri: builtins.str
@property
[docs] def train_node_type_to_random_negative_data_uri(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
@property
[docs] def val_node_type_to_random_negative_data_uri(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
@property
[docs] def test_node_type_to_random_negative_data_uri(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
def __init__( self, *, train_main_data_uri: builtins.str = ..., test_main_data_uri: builtins.str = ..., val_main_data_uri: builtins.str = ..., train_node_type_to_random_negative_data_uri: collections.abc.Mapping[builtins.str, builtins.str] | None = ..., val_node_type_to_random_negative_data_uri: collections.abc.Mapping[builtins.str, builtins.str] | None = ..., test_node_type_to_random_negative_data_uri: collections.abc.Mapping[builtins.str, builtins.str] | None = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["test_main_data_uri", b"test_main_data_uri", "test_node_type_to_random_negative_data_uri", b"test_node_type_to_random_negative_data_uri", "train_main_data_uri", b"train_main_data_uri", "train_node_type_to_random_negative_data_uri", b"train_node_type_to_random_negative_data_uri", "val_main_data_uri", b"val_main_data_uri", "val_node_type_to_random_negative_data_uri", b"val_node_type_to_random_negative_data_uri"]) -> None: ...
[docs] global___NodeAnchorBasedLinkPredictionDataset = NodeAnchorBasedLinkPredictionDataset
[docs] class SupervisedLinkBasedTaskSplitDataset(google.protobuf.message.Message): """Stores SupervisedLinkBasedTaskSample-relevant output"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] TRAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs] TEST_DATA_URI_FIELD_NUMBER: builtins.int
[docs] VAL_DATA_URI_FIELD_NUMBER: builtins.int
[docs] train_data_uri: builtins.str
[docs] test_data_uri: builtins.str
[docs] val_data_uri: builtins.str
def __init__( self, *, train_data_uri: builtins.str = ..., test_data_uri: builtins.str = ..., val_data_uri: builtins.str = ..., ) -> None: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["test_data_uri", b"test_data_uri", "train_data_uri", b"train_data_uri", "val_data_uri", b"val_data_uri"]) -> None: ...
[docs] global___SupervisedLinkBasedTaskSplitDataset = SupervisedLinkBasedTaskSplitDataset
[docs] class DatasetMetadata(google.protobuf.message.Message): """Stores final dataset output by SplitGenerator"""
[docs] DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs] SUPERVISED_NODE_CLASSIFICATION_DATASET_FIELD_NUMBER: builtins.int
@property
[docs] def supervised_node_classification_dataset(self) -> global___SupervisedNodeClassificationDataset: """indicates the output is of SupervisedNodeClassificationSamples"""
@property @property def __init__( self, *, supervised_node_classification_dataset: global___SupervisedNodeClassificationDataset | None = ..., node_anchor_based_link_prediction_dataset: global___NodeAnchorBasedLinkPredictionDataset | None = ..., supervised_link_based_task_dataset: global___SupervisedLinkBasedTaskSplitDataset | None = ..., ) -> None: ...
[docs] def HasField(self, field_name: typing_extensions.Literal["node_anchor_based_link_prediction_dataset", b"node_anchor_based_link_prediction_dataset", "output_metadata", b"output_metadata", "supervised_link_based_task_dataset", b"supervised_link_based_task_dataset", "supervised_node_classification_dataset", b"supervised_node_classification_dataset"]) -> builtins.bool: ...
[docs] def ClearField(self, field_name: typing_extensions.Literal["node_anchor_based_link_prediction_dataset", b"node_anchor_based_link_prediction_dataset", "output_metadata", b"output_metadata", "supervised_link_based_task_dataset", b"supervised_link_based_task_dataset", "supervised_node_classification_dataset", b"supervised_node_classification_dataset"]) -> None: ...
[docs] def WhichOneof(self, oneof_group: typing_extensions.Literal["output_metadata", b"output_metadata"]) -> typing_extensions.Literal["supervised_node_classification_dataset", "node_anchor_based_link_prediction_dataset", "supervised_link_based_task_dataset"] | None: ...
[docs] global___DatasetMetadata = DatasetMetadata