"""
@generated by mypy-protobuf. Do not edit manually!
isort:skip_file
"""
import builtins
import collections.abc
import google.protobuf.descriptor
import google.protobuf.internal.containers
import google.protobuf.message
import sys
if sys.version_info >= (3, 8):
import typing as typing_extensions
else:
import typing_extensions
[docs]
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
[docs]
class SupervisedNodeClassificationDataset(google.protobuf.message.Message):
"""Stores SupervisedNodeClassificationSample-relevant output"""
[docs]
DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs]
TRAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
TEST_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
VAL_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
train_data_uri: builtins.str
[docs]
test_data_uri: builtins.str
[docs]
val_data_uri: builtins.str
def __init__(
self,
*,
train_data_uri: builtins.str = ...,
test_data_uri: builtins.str = ...,
val_data_uri: builtins.str = ...,
) -> None: ...
[docs]
def ClearField(self, field_name: typing_extensions.Literal["test_data_uri", b"test_data_uri", "train_data_uri", b"train_data_uri", "val_data_uri", b"val_data_uri"]) -> None: ...
[docs]
global___SupervisedNodeClassificationDataset = SupervisedNodeClassificationDataset
[docs]
class NodeAnchorBasedLinkPredictionDataset(google.protobuf.message.Message):
"""Stores NodeAnchorBasedLinkPredictionSample-relevant output"""
[docs]
DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs]
class TrainNodeTypeToRandomNegativeDataUriEntry(google.protobuf.message.Message):
[docs]
DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs]
KEY_FIELD_NUMBER: builtins.int
[docs]
VALUE_FIELD_NUMBER: builtins.int
[docs]
value: builtins.str
def __init__(
self,
*,
key: builtins.str = ...,
value: builtins.str = ...,
) -> None: ...
[docs]
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs]
class ValNodeTypeToRandomNegativeDataUriEntry(google.protobuf.message.Message):
[docs]
DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs]
KEY_FIELD_NUMBER: builtins.int
[docs]
VALUE_FIELD_NUMBER: builtins.int
[docs]
value: builtins.str
def __init__(
self,
*,
key: builtins.str = ...,
value: builtins.str = ...,
) -> None: ...
[docs]
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs]
class TestNodeTypeToRandomNegativeDataUriEntry(google.protobuf.message.Message):
[docs]
DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs]
KEY_FIELD_NUMBER: builtins.int
[docs]
VALUE_FIELD_NUMBER: builtins.int
[docs]
value: builtins.str
def __init__(
self,
*,
key: builtins.str = ...,
value: builtins.str = ...,
) -> None: ...
[docs]
def ClearField(self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]) -> None: ...
[docs]
TRAIN_MAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
TEST_MAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
VAL_MAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
TRAIN_NODE_TYPE_TO_RANDOM_NEGATIVE_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
VAL_NODE_TYPE_TO_RANDOM_NEGATIVE_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
TEST_NODE_TYPE_TO_RANDOM_NEGATIVE_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
train_main_data_uri: builtins.str
[docs]
test_main_data_uri: builtins.str
[docs]
val_main_data_uri: builtins.str
@property
[docs]
def train_node_type_to_random_negative_data_uri(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
@property
[docs]
def val_node_type_to_random_negative_data_uri(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
@property
[docs]
def test_node_type_to_random_negative_data_uri(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
def __init__(
self,
*,
train_main_data_uri: builtins.str = ...,
test_main_data_uri: builtins.str = ...,
val_main_data_uri: builtins.str = ...,
train_node_type_to_random_negative_data_uri: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
val_node_type_to_random_negative_data_uri: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
test_node_type_to_random_negative_data_uri: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
) -> None: ...
[docs]
def ClearField(self, field_name: typing_extensions.Literal["test_main_data_uri", b"test_main_data_uri", "test_node_type_to_random_negative_data_uri", b"test_node_type_to_random_negative_data_uri", "train_main_data_uri", b"train_main_data_uri", "train_node_type_to_random_negative_data_uri", b"train_node_type_to_random_negative_data_uri", "val_main_data_uri", b"val_main_data_uri", "val_node_type_to_random_negative_data_uri", b"val_node_type_to_random_negative_data_uri"]) -> None: ...
[docs]
global___NodeAnchorBasedLinkPredictionDataset = NodeAnchorBasedLinkPredictionDataset
[docs]
class SupervisedLinkBasedTaskSplitDataset(google.protobuf.message.Message):
"""Stores SupervisedLinkBasedTaskSample-relevant output"""
[docs]
DESCRIPTOR: google.protobuf.descriptor.Descriptor
[docs]
TRAIN_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
TEST_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
VAL_DATA_URI_FIELD_NUMBER: builtins.int
[docs]
train_data_uri: builtins.str
[docs]
test_data_uri: builtins.str
[docs]
val_data_uri: builtins.str
def __init__(
self,
*,
train_data_uri: builtins.str = ...,
test_data_uri: builtins.str = ...,
val_data_uri: builtins.str = ...,
) -> None: ...
[docs]
def ClearField(self, field_name: typing_extensions.Literal["test_data_uri", b"test_data_uri", "train_data_uri", b"train_data_uri", "val_data_uri", b"val_data_uri"]) -> None: ...
[docs]
global___SupervisedLinkBasedTaskSplitDataset = SupervisedLinkBasedTaskSplitDataset