Source code for gigl.src.common.constants.bq

from gigl.env.pipelines_config import get_resource_config
from gigl.src.common.types import AppliedTaskIdentifier
from gigl.src.common.types.graph_data import NodeType
from gigl.src.common.utils.bq import BqUtils


[docs] def get_embeddings_dataset_bq_path() -> str: """ Returns the path to where the table for embeddings will be stored in BQ, specified in GiGLResourceConfig """ project = get_resource_config().project dataset = get_resource_config().embedding_bq_dataset_name bq_dataset_path = BqUtils.join_path(project, dataset) return bq_dataset_path
[docs] def get_embeddings_table( applied_task_identifier: AppliedTaskIdentifier, node_type: NodeType ) -> str: """ Returns the full BQ table path where embeddings will be stored Args: applied_task_identifier (AppliedTaskIdentifier): The name provided for the gigl job """ embeddings_table_name = f"embeddings_{node_type}_{applied_task_identifier}" bq_table_path = BqUtils.join_path( get_embeddings_dataset_bq_path(), embeddings_table_name ) return bq_table_path
[docs] def get_predictions_table( applied_task_identifier: AppliedTaskIdentifier, node_type: NodeType ) -> str: """ This function return the BQ table path where predictions will be stored Args: applied_task_identifier (AppliedTaskIdentifier): The name provided for the gigl job """ predictions_table_name = f"predictions_{node_type}_{applied_task_identifier}" bq_table_path = BqUtils.join_path( get_embeddings_dataset_bq_path(), predictions_table_name ) return bq_table_path