Source code for gigl.experimental.knowledge_graph_embedding.common.torchrec.batch
import abc
from dataclasses import dataclass, field, make_dataclass
from typing import Dict
import torch
from torchrec.streamable import Pipelineable
[docs]
class BatchBase(Pipelineable, abc.ABC):
"""
This class extends https://github.com/pytorch/torchrec/blob/main/torchrec/datasets/utils.py#L28
to be reusable for any batch.
This enables use with certain torchrec tools like pipelined training, which overlaps
dataloading device transfer (copy to GPU), inter-device ocmmunications, and fwd/bkwd.
"""
@abc.abstractmethod
[docs]
def as_dict(self) -> Dict:
raise NotImplementedError
[docs]
def to(self, device: torch.device, non_blocking: bool = False):
args = {}
for feature_name, feature_value in self.as_dict().items():
args[feature_name] = feature_value.to(
device=device, non_blocking=non_blocking
)
return self.__class__(**args)
[docs]
def record_stream(self, stream: torch.cuda.streams.Stream) -> None:
for feature_value in self.as_dict().values():
feature_value.record_stream(stream)
[docs]
def pin_memory(self):
args = {}
for feature_name, feature_value in self.as_dict().items():
args[feature_name] = feature_value.pin_memory()
return self.__class__(**args)
def __repr__(self) -> str:
def obj2str(v):
return f"{v.size()}" if hasattr(v, "size") else f"{v.length_per_key()}"
return "\n".join([f"{k}: {obj2str(v)}," for k, v in self.as_dict().items()])
@property
[docs]
def batch_size(self) -> int:
for tensor in self.as_dict().values():
if tensor is None:
continue
if not isinstance(tensor, torch.Tensor):
continue
return tensor.shape[0]
raise Exception("Could not determine batch size from tensors.")
# TODO(nshah-sc): Consider folding BatchBase into this class.
@dataclass
[docs]
class DataclassBatch(BatchBase):
"""
Makes it easy to create a Batch with some generic dataclass.
"""
@classmethod
[docs]
def feature_names(cls):
return list(cls.__dataclass_fields__.keys())
[docs]
def as_dict(self):
return {
feature_name: getattr(self, feature_name)
for feature_name in self.feature_names()
if hasattr(self, feature_name)
}
@staticmethod
[docs]
def from_schema(name: str, schema):
"""Instantiates a custom batch subclass if all columns can be represented as a torch.Tensor."""
return make_dataclass(
cls_name=name,
fields=[(name, torch.Tensor, field(default=None)) for name in schema.names],
bases=(DataclassBatch,),
)
@staticmethod
[docs]
def from_fields(name: str, fields: dict):
return make_dataclass(
cls_name=name,
fields=[
(_name, _type, field(default=None)) for _name, _type in fields.items()
],
bases=(DataclassBatch,),
)