Source code for gigl.distributed.utils.partition_book
from typing import Union
import torch
from graphlearn_torch.partition import PartitionBook, RangePartitionBook
def _get_ids_from_range_partition_book(
range_partition_book: PartitionBook, rank: int
) -> torch.Tensor:
"""
This function is very similar to RangePartitionBook.id_filter(). However, we re-implement this here, since the usage-pattern for that is a bit strange
i.e. range_partition_book.id_filter(node_pb=range_partition_book, partition_idx=rank).
"""
assert isinstance(range_partition_book, RangePartitionBook)
start_node_id = range_partition_book.partition_bounds[rank - 1] if rank > 0 else 0
end_node_id = range_partition_book.partition_bounds[rank]
return torch.arange(start_node_id, end_node_id, dtype=torch.int64)
[docs]
def get_ids_on_rank(
partition_book: Union[torch.Tensor, PartitionBook],
rank: int,
) -> torch.Tensor:
"""
Provided a tensor-based partition book or a range-based bartition book and a rank, returns all the ids that are stored on that rank.
Args:
partition_book (Union[torch.Tensor, PartitionBook]): Tensor or range-based partition book
rank (int): Rank of current machine
"""
if isinstance(partition_book, torch.Tensor):
return torch.nonzero(partition_book == rank).squeeze(dim=1)
else:
return _get_ids_from_range_partition_book(
range_partition_book=partition_book, rank=rank
)